Historical GDP/GDPPC/Population: Difference between revisions

From Pardee Wiki
Jump to navigation Jump to search
(Created page with "<inputbox> type=create width=100 break=no buttonlabel=Create new article placeholder=Article title </inputbox>")
 
No edit summary
Line 1: Line 1:
<inputbox>
= '''Summary''' =
type=create
The historical GDP, population, and GDPPC data is pulled from the article '''"New Estimates of Over 500 Years of Historic GDP and Population Data"''' by Fariss et al. (2022). The article proposed a dynamic latent variable model to address three major issues in historical GDP, population, and GDP per capita data. Namely 1) missing data, 2) measurement uncertainty, 3) systematic bias across sources.
width=100
 
break=no
The authors built a dynamic latent variable model that combined multiple historical and contemporary datasets. The work was supported by the Security and Political Economy (SPEC) Lab at the University of Southern California.
buttonlabel=Create new article
 
placeholder=Article title
For population and GDP per capita, the latent trait model parameters were constructed based on following formula:
</inputbox>
[[File:Farris et al., 2022.png|thumb|450x450px|(Farris et al., 2022)]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
= Tables in IFs =
{| class="wikitable"
|Variable
|Table
|Definition
|Last IFs Update
|UsedInPreprocessor
|-
|HistoricalGDP%mean
|SeriesHistoricalGDP%mean
|Mean of historical GDP values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|-
|HistoricalGDP%meanLog10
|SeriesHistoricalGDP%meanLog10
|Mean of log10 of historical GDP values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|-
|HistoricalGDP%sd
|SeriesHistoricalGDP%sd
|SD of historical GDP values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|-
|HistoricalGDP%sdlog10
|SeriesHistoricalGDP%sdlog10
|SD of log10 of historical GDP values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|-
|HistoricalGDPPC%mean
|SeriesHistoricalGDPPC%mean
|Mean of historical GDP per capita values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|-
|HistoricalGDPPC%meanlog10
|SeriesHistoricalGDPPC%meanlog10
|Mean of log10 of historical GDP per capita values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|-
|HistoricalGDPPC%sd
|SeriesHistoricalGDPPC%sd
|SD of historical GDP per capita values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|-
|HistoricalGDPPC%sdlog10
|SeriesHistoricalGDPPC%sdlog10
|SD of log10 of historical GDP per capita values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|-
|HistoricalPOP%mean
|SeriesHistoricalPOP%mean
|Mean of historical population values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|-
|HistoricalPOP%meanlog10
|SeriesHistoricalPOP%meanlog10
|Mean of log10 of historical population values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|-
|Historicalpop%sd
|SeriesHistoricalpop%sd
|SD of historical population values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|-
|HistoricalPOP%sdlog10
|SeriesHistoricalPOP%sdlog10
|SD of log10 of historical population values extended with a Latent Variable Modeling Framework.
|7/23/2025
|0
|}
 
= Data Pulling Instructions =
 
====== Step 1: ======
To pull data from this paper, go to:
 
<nowiki>https://journals.sagepub.com/doi/full/10.1177/00220027211054432</nowiki>
 
In the Acknowledgements section, there is a link to the predicted data:
 
<nowiki>https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FALCGS</nowiki>
[[File:Data source.png|thumb]]
 
 
 
 
 
 
 
 
 
====== Step 2: ======
Download the most updated datafiles (in this example, in 2024).
 
= Data Notes =
1.     The paper was published in 2022. In 2024, the author shared an updated version of the datafile.
 
2.     The data files are in .rds format, if using R, open the file and it will automatically import; if using python, use the ''read_r'' function in the ''pyreadr'' package.
 
3.     The datafile included predicted values as well as datasets used in the modeling, slice “latent_gdp”, “latent_gdppc”, “latent_pop” from the indicator column of corresponding datafiles for the predicted values.
 
4.     GWNO codes and corresponding country names were provided in the supplementary files of the original paper. However, the supplementary only provided corresponding codes for 217 countries/regions and the dataset had 225 countries/regions (missing: 89,99,327, 396,397, 563,564,711). For the additional gwno codes, use this link for corresponding country names: <nowiki>http://ksgleditsch.com/data-4.html</nowiki>.

Revision as of 18:07, 23 July 2025

Summary

The historical GDP, population, and GDPPC data is pulled from the article "New Estimates of Over 500 Years of Historic GDP and Population Data" by Fariss et al. (2022). The article proposed a dynamic latent variable model to address three major issues in historical GDP, population, and GDP per capita data. Namely 1) missing data, 2) measurement uncertainty, 3) systematic bias across sources.

The authors built a dynamic latent variable model that combined multiple historical and contemporary datasets. The work was supported by the Security and Political Economy (SPEC) Lab at the University of Southern California.

For population and GDP per capita, the latent trait model parameters were constructed based on following formula:

(Farris et al., 2022)









Tables in IFs

Variable Table Definition Last IFs Update UsedInPreprocessor
HistoricalGDP%mean SeriesHistoricalGDP%mean Mean of historical GDP values extended with a Latent Variable Modeling Framework. 7/23/2025 0
HistoricalGDP%meanLog10 SeriesHistoricalGDP%meanLog10 Mean of log10 of historical GDP values extended with a Latent Variable Modeling Framework. 7/23/2025 0
HistoricalGDP%sd SeriesHistoricalGDP%sd SD of historical GDP values extended with a Latent Variable Modeling Framework. 7/23/2025 0
HistoricalGDP%sdlog10 SeriesHistoricalGDP%sdlog10 SD of log10 of historical GDP values extended with a Latent Variable Modeling Framework. 7/23/2025 0
HistoricalGDPPC%mean SeriesHistoricalGDPPC%mean Mean of historical GDP per capita values extended with a Latent Variable Modeling Framework. 7/23/2025 0
HistoricalGDPPC%meanlog10 SeriesHistoricalGDPPC%meanlog10 Mean of log10 of historical GDP per capita values extended with a Latent Variable Modeling Framework. 7/23/2025 0
HistoricalGDPPC%sd SeriesHistoricalGDPPC%sd SD of historical GDP per capita values extended with a Latent Variable Modeling Framework. 7/23/2025 0
HistoricalGDPPC%sdlog10 SeriesHistoricalGDPPC%sdlog10 SD of log10 of historical GDP per capita values extended with a Latent Variable Modeling Framework. 7/23/2025 0
HistoricalPOP%mean SeriesHistoricalPOP%mean Mean of historical population values extended with a Latent Variable Modeling Framework. 7/23/2025 0
HistoricalPOP%meanlog10 SeriesHistoricalPOP%meanlog10 Mean of log10 of historical population values extended with a Latent Variable Modeling Framework. 7/23/2025 0
Historicalpop%sd SeriesHistoricalpop%sd SD of historical population values extended with a Latent Variable Modeling Framework. 7/23/2025 0
HistoricalPOP%sdlog10 SeriesHistoricalPOP%sdlog10 SD of log10 of historical population values extended with a Latent Variable Modeling Framework. 7/23/2025 0

Data Pulling Instructions

Step 1:

To pull data from this paper, go to:

https://journals.sagepub.com/doi/full/10.1177/00220027211054432

In the Acknowledgements section, there is a link to the predicted data:

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FALCGS

Data source.png





Step 2:

Download the most updated datafiles (in this example, in 2024).

Data Notes

1.     The paper was published in 2022. In 2024, the author shared an updated version of the datafile.

2.     The data files are in .rds format, if using R, open the file and it will automatically import; if using python, use the read_r function in the pyreadr package.

3.     The datafile included predicted values as well as datasets used in the modeling, slice “latent_gdp”, “latent_gdppc”, “latent_pop” from the indicator column of corresponding datafiles for the predicted values.

4.     GWNO codes and corresponding country names were provided in the supplementary files of the original paper. However, the supplementary only provided corresponding codes for 217 countries/regions and the dataset had 225 countries/regions (missing: 89,99,327, 396,397, 563,564,711). For the additional gwno codes, use this link for corresponding country names: http://ksgleditsch.com/data-4.html.