if s f u s e h i s t = 1 {\displaystyle \mathbf {sfusehist} =1} then (use history)
S F I N S T A B A L L r , t = P r e d i c t e d T e r m f , t P r e d i c t e d T e r m f , t = 1 ∗ S F I N S T A B A L L r , t = 1 {\displaystyle SFINSTABALL_{r,t}={\frac {PredictedTerm_{f,t}}{PredictedTerm_{f,t=1}}}*\mathbf {SFINSTABALL} _{r,t=1}}
where
P r e d i c t e d T e r m r , t = A N A L F U N C ( G D P P C P r , t , D e m o c T e r m t , I n f M o r T e r m t , T r a d e T e r m t , E d u c 25 T e r m t ) {\displaystyle PredictedTerm_{r,t}=ANALFUNC(GDPPCP_{r,t},DemocTerm_{t},InfMorTerm_{t},TradeTerm_{t},Educ25Term_{t})}
D e m o c T e r m = D e m o P o l i t y r {\displaystyle DemocTerm=DemoPolity_{r}}
I n f M o r T e r m = I N F M O R r W I N F M O R {\displaystyle InfMorTerm={\frac {INFMOR_{r}}{WINFMOR}}}
T r a d e T e r m = X r + M r G D P ∗ 100 {\displaystyle TradeTerm={\frac {X_{r}+M_{r}}{GDP}}*100}
E d u c 25 T e r m = E D Y R S A G 25 r {\displaystyle Educ25Term=EDYRSAG25_{r}}