GDP & GDPPCPPP from IMF World Economic Outlook & WDI

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Contents

Related wiki Pages DataDict Instructions on updating GDP & GDPPCPPP GDP GDPPCPPP

Related wiki Pages

- 1. GDP and GDPPC
- 2. GDP2011
- 3. GDP2011PCPPP

DataDict

Variable	Table	Group	SubGroup	Serie	s CoVaTrA	Cohor	t Definition	Extended Source Defn	Units	CURRENCY Years	Source
GDP2011	SeriesGDP2011	Economy	Aggregate	Yes	No	No	GDP (MER) at constant 2011 US\$, IMF 2024 Apr Release, last year of data is 2026	IMF 2024 Apr Release, projection to 2026; WDI 2024 Mar version, values up to 2022	Bil 2011\$	1960-2026	WDI, IMF
GDP2011PCPP	P SeriesGDP2011PCPP	P Economic, Favorites	GDP per Capita	Yes	No	No	GDP per capita (constant 2011 PPP International \$)	WDI 2024 Mar version, values up to 2022	2011 PPP\$	1960-2022	WDI
GDP2017	SeriesGDP2017	Economy	Aggregate	Yes	No	No	GDP (MER) at constant 2017 US\$, IMF 2024 Apr Release, last year of data is 2026	IMF 2024 Apr Release, projection to 2026; WDI 2024 Mar version, values up to 2022	Bil 2017\$	1960-2026	WDI, IMF
GDP2017PCPP	P SeriesGDP2017PCPP	P Economic, Favorites	GDP per Capita	Yes	No	No	GDP per capita (constant 2017 PPP International \$)	WDI 2024 Mar version, values up to 2022	2017 PPP\$	1960-2022	WDI

Note: The most recent update date was in May, 2024.

Instructions on updating GDP & GDPPCPPP

GDP

- 1. Download data
 - GDP (current US\$): https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
 - GDP growth (annual %): https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG
 - IMF: entire dataset https://www.imf.org/en/Publications/WEO/weo-database/2024/April/download-entire-datab ase
 - We will only use WEO Subject Code in (NGDP_RPCH, NGDPD). NGDP_RPCH is the percent change of GDP, and NGDPD is GDP in current US\$ in Billions).
 - IFsHistSeries: SeriesGDP2011 and SeriesGDP2017, in current US\$ in Billions. We will use
 2011 as the example in this instruction.

2. Calculate Growth_Rate from SeriesGDP2011. (The growth_rate need to $\ast 100$ as percent value.)

3. Change all the data we downloaded and calculated to the format of [Country, Year, VAL]

- GDP (current US\$): Country, Year, wb_curr
- GDP growth (annual %): Country, Year, wb_growth
- IMF_NGDP_RPCH: Country, Year, imf_growth
- IMF_ NGDPD: Country, Year, imf_curr (*Note1*)
- SeriesGDP2011: Country, Year, ifs_gdp (*Note1*)
- Growth_Rate: Country, Year, ifs_growth

Note1: imf_curr and ifs_gdp need to be * 1000000000 due to the Billions Unit.

- 4. Create a new value, **GDP_curr**, primarily using wb_curr.
 - If there is a null in wb_curr, then use imf_curr to fill the null.
 - If there is a null in both wb_curr and imf_curr, then use ifs_gdp to fill the null.
- 5. Create a new value, **Growth**, primarily using wb_growth
 - If there is a null in wb_growth, then use imf_growth to fill the null.
 - If there is a null in both wb_growth and imf_growth, then use ifs_growth to fill the null.
 - After filling nulls, use forward fill to fill the rest of nulls.
- 6. Create a new value, **GDP_new**,
 - The base year is 2011 since we use GDP2011 from the IFsHist. It will change to 2017 when we use GDP2017.

- Fill the base year value in GDP_curr to GDP_new for each country.
- After this step, every country will only have 1 value in GDP_new for the base year, e.g. 2011.
- 7. Fill the rest of the years for **GDP_new** using **Growth** and **GDP_curr**:
 - For the years before the base year, 2011, we will calculate the value from 2010 to 1960.
 E.g. GDP_new in 2010 = GDP_new in 2011*100 / (Growth in 2011 + 100). The year will be rolling for the rest of the calculation.
 - For the years from the base year to year_end(*Note2*), 2011, we will calculate the value from 2012 to 2026. E.g. GDP_new in 2012 = GDP_new in 2011*(100 + Growth in 2012) / 100. The year will be rolling for the rest of the calculation.

Note2: year_end is 2 years from now.

8. GDP_new is the new value for GDP2011. Need to be /1000000000 and be rounded to 5 decimals.

GDPPCPPP

- 1. Download Data
 - GDP per capita (current LCU): https://data.worldbank.org/indicator/NY.GDP.PCAP.CN
 - GDP deflator (base year varies by country): https://data.worldbank.org/indicator/NY.GDP.DEFL.ZS
 - PPP conversion factor, GDP (LCU per international \$): https://data.worldbank.org/indicator/PA.NUS.PPP
 - GDP per capita growth (annual %): https://data.worldbank.org/indicator/NY.GDP.PCAP.KD.ZG
 - IFsHistSeries: SeriesGDP2011PCPPP and SeriesGDP2017PCPPP. We will use **2011** as the example in this instruction.

2. Calculate PCPPP_Growth_Rate from SeriesGDP2011PCPPP. (The growth_rate need to *100 as percent value.)

3. Change all the data we downloaded and calculated to the format of [Country, Year, VAL]

- GDP per capita (current LCU): Country, Year, wb_curr
- GDP deflator (base year varies by country): Country, Year, wb_deflat
- PPP conversion factor, GDP (LCU per international \$): Country, Year, wb_ppp_cov
- GDP per capita growth (annual %): Country, Year, wb_growth
- SeriesGDP2011PCPPP: Country, Year, ifs_pcppp
- PCPPP_Growth_Rate: Country, Year, ifs_pcppp_growth
- 4. Create a new value, **pc_growth**, primarily using wb_growth.

• If there is a null in wb_growth, then use ifs_pcppp_growth to fill the null.

5. Create a new value, **2011_deflat** (if use SeriesGDP2017PCPPP, then the new value is 2017_deflat)

- The base year is 2011 since we use GDP2011PCPPP from the IFsHist. It will change to 2017 when we use GDP2017PCPPP.
- Fill the base year value in wb_deflat in 2011_deflat for each country.
- After this step, every country will only have 1 value in 2011_deflat for the base year, e.g. 2011.
- If there is null value for wb_deflat in the base year, then you can leave the 2011_deflat null.

6. Create a new value, **2011_ppp_cov** (if use SeriesGDP2017PCPPP, then the new value is 2017_ppp_cov)

- Fill the base year value in wb_ppp_cov in 2011_ppp_cov for each country.
- After this step, every country will only have 1 value in 2011_ppp_cov for the base year, e.g. 2011.
- 7. Create a **new table** using [Country, Year, wb_curr] and [Country, Year, wb_deflat]
 - Find the most recent year for each country as well as the wb_curr and wb_deflat in that most recent year.
- 8. Merge the new table with 2011_deflat and 2011_ppp_cov only using Country.
 - The output table would be
 - Country
 - Year (the most recent year for the country)
 - wb_curr (the wb_curr in the most recent year for the country)
 - wb_deflat (the wb_deflat in the most recent year for the country)
 - 2011_deflat (the deflator in the base year, 2011)
 - 2011_ppp_cov (the ppp_cov in the base year, 2011)
 - Calculate a new value, 2011_const_pcppp (if use SeriesGDP2017PCPPP, then the new value is 2017_const_pcppp) using the formula below.

• 2011_const_pcppp = (wb_curr * (2011_deflat/wb_deflat))/2011_ppp_cov

9. There will be countries having 0 or null values for **2011_const_pcppp**. We will use the value in ifs_pcppp in the most recent year for these missing countries to fill 2011_const_pcppp. (In this case, the most recent year will change to the most recent year for ifs_pcppp.) Thus, all 188 countries should have a 2011_const_pcppp for its most recent year.

10. Now we have 2011_const_pcppp in the most recent year for each country. We will calculate the 2011_const_pcppp for the rest of the year.

- year_end = 2022 (The most recent year in GDP per capita (current LCU) from WDI).
- Starting from the most recent year to the earliest year. E.g. The most recent year in Afghanistan is 2021, 2021 – 1960, for 2020
 - 2011_const_pcppp in 2020 = 100* 2011_const_pcppp in 2021 / (100 + pc_growth in 2021)
- Starting from the most recent year to the year_end. E.g. The most recent year in Afghanistan is 2021, 2021 – 2022, for 2022
 - 2011_const_pcppp in 2022 = 2011_const_pcppp in 2021 * (100 + pc_growth in 2022)/100

11. The 2011_const_pcppp is the new value for GDP2011PCPPP. Need to be rounded to 5 decimals.

Retrieved from

"https://pardeewiki.du.edu//index.php?title=GDP_%26_GDPPCPPP_from_IMF_World_Economic_Outlook_%26_WDI &oldid=11559"

This page was last edited on 22 May 2024, at 06:17.