Sandbox: Difference between revisions

From Pardee Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>CD_{r}=\frac{YL_{r,t=1}}&#x7B;&#x7B;KAG_{r,t=1}^{CDALF_{r,s=1&#x7D;&#x7D;}*{LABS_{r,s=1,t=1}^{(1-CDALF_{r,s=1})}}}</math> BLOOP <math>ClimateEffect_{t+1}=100*(\frac{e^{-0.5*\frac{(TO_{r}+DeltaT_{r}-Topt)^{2}}{SigmaTsqd}}*ln(PO_{r}*(\frac{DeltaP_{r}}{100}+1))}{e^{-0.5*\frac{(TO_{r}-Topt)^{2}}{SigmaTsqd}*ln(PO_{r})}-1)</math> \dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} }
<math>CD_{r}=\frac{YL_{r,t=1}}&#x7B;&#x7B;KAG_{r,t=1}^{CDALF_{r,s=1&#x7D;&#x7D;}*{LABS_{r,s=1,t=1}^{(1-CDALF_{r,s=1})}}}</math> BLOOP <math>ClimateEffect_{t+1}=100*(\frac{e^{-0.5*\frac{(TO_{r}+DeltaT_{r}-Topt)^{2}}{SigmaTsqd}}*ln(PO_{r}*(\frac{DeltaP_{r}}{100}+1))}{e^{-0.5*\frac{(TO_{r}-Topt)^{2}}{SigmaTsqd}*ln(PO_{r})}-1)</math> \dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} }


  BLOOP <math>XS_{r,s=1}=XS_{r,s=1}*\frac{\frac{\Sigma_{r}(XS_{r,s=1})+\Sigma_{r}(MS_{r,s=1})}{2}}{\Sigma_{r}(XS_{r,s=1})}}</math>
  BLOOP <math>XS_{r,s=1}=XS_{r,s=1}*\frac{\frac{\Sigma_{r}(XS_{r,s=1})+\Sigma_{r}(MS_{r,s=1})}{2}}{\Sigma_{r}(XS_{r,s=1})}</math>

Revision as of 18:44, 10 April 2017

Failed to parse (syntax error): {\displaystyle CD_{r}=\frac{YL_{r,t=1}}&#x7B;&#x7B;KAG_{r,t=1}^{CDALF_{r,s=1&#x7D;&#x7D;}*{LABS_{r,s=1,t=1}^{(1-CDALF_{r,s=1})}}}} BLOOP Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ClimateEffect_{t+1}=100*(\frac{e^{-0.5*\frac{(TO_{r}+DeltaT_{r}-Topt)^{2}}{SigmaTsqd}}*ln(PO_{r}*(\frac{DeltaP_{r}}{100}+1))}{e^{-0.5*\frac{(TO_{r}-Topt)^{2}}{SigmaTsqd}*ln(PO_{r})}-1)} \dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} }

BLOOP