Sandbox: Difference between revisions
CamrynDreyer (talk | contribs) No edit summary |
CamrynDreyer (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
== | == Structure-Based and Agent-Class Driven Modeling == | ||
''' | '''The''' '''Structure-Based, Agent-Class Driven''' approach has five key elements methodologically: organizing structures, stocks, flows, key aggregate relationships, and key agent-class behavioral relationships. | ||
Organizing structures are well-recognized and theoretical and conceptual frameworks with an organizing character for important human systems: cohort-component structures for demographic systems, markets for economic systems, financial flows for socio-political-economic systems, and so on. | |||
''' | '''Stocks and flows remind us of systems dynamics.''' In demographic systems, the stocks are numbers of people in age- and sex-specific cohorts, while the flows are births, deaths, and migration. Systems dynamics would deal with the key relationships as auxiliaries, but econometrics would recognize them as equations that require empirical estimation.<ref>Bremer, Stuart A. 1977. Simulated Worlds: A Computer Model of National Decision-Making. Princeton: Princeton University Press.</ref> | ||
'''Key Aggregate Relationships.''' Life expectancy or mortality is a key aggregate relationship, clearly a function of income, perhaps education, and certainly of technological change. Aggregate Relationships are often actually Agent-Class behaviors that have not yet been decomposed enough to represent in terms of a single agent class. For instance, life expectancy is a function of government and firm spending on R&D as well as household life-style choices; it could eventually be decomposed to the agent-class level. | |||
''' | '''Key Agent-Class Behavioral Relationships.''' For example, in the case of fertility, there is one primary agent-class, namely households, whose behavior, as a function again of income, education, and technology, will change over time. | ||
'''Agent-classes versus micro agents.''' IFs is not agent-based in the sense of models that represent individual micro-agents following rules and generating structures through their behavior. Instead, IFs represents both existing macro-agent classes and existing structures (with complex historic path dependencies), attempting to represent some elements of how behavior of those agents can change and how the structures can evolve. Although building aggregate model behavior and structure upward from micro agent behavior is laudable in more narrowly-focused models, global systems and structures are far too numerous and well-developed for such efforts to succeed across the breadth of concerns in IFs. | |||
In representing the behavior of agent classes and the structures of systems, IFs draws upon large bodies of insight in many theoretical and modeling literatures. Although IFs sometimes breaks new ground with respect to specific sub-systems, its strengths lie primarily in the integration and synthesis of much earlier work. | |||
Revision as of 16:12, 22 June 2017
Structure-Based and Agent-Class Driven Modeling
The Structure-Based, Agent-Class Driven approach has five key elements methodologically: organizing structures, stocks, flows, key aggregate relationships, and key agent-class behavioral relationships.
Organizing structures are well-recognized and theoretical and conceptual frameworks with an organizing character for important human systems: cohort-component structures for demographic systems, markets for economic systems, financial flows for socio-political-economic systems, and so on.
Stocks and flows remind us of systems dynamics. In demographic systems, the stocks are numbers of people in age- and sex-specific cohorts, while the flows are births, deaths, and migration. Systems dynamics would deal with the key relationships as auxiliaries, but econometrics would recognize them as equations that require empirical estimation.[1]
Key Aggregate Relationships. Life expectancy or mortality is a key aggregate relationship, clearly a function of income, perhaps education, and certainly of technological change. Aggregate Relationships are often actually Agent-Class behaviors that have not yet been decomposed enough to represent in terms of a single agent class. For instance, life expectancy is a function of government and firm spending on R&D as well as household life-style choices; it could eventually be decomposed to the agent-class level.
Key Agent-Class Behavioral Relationships. For example, in the case of fertility, there is one primary agent-class, namely households, whose behavior, as a function again of income, education, and technology, will change over time.
Agent-classes versus micro agents. IFs is not agent-based in the sense of models that represent individual micro-agents following rules and generating structures through their behavior. Instead, IFs represents both existing macro-agent classes and existing structures (with complex historic path dependencies), attempting to represent some elements of how behavior of those agents can change and how the structures can evolve. Although building aggregate model behavior and structure upward from micro agent behavior is laudable in more narrowly-focused models, global systems and structures are far too numerous and well-developed for such efforts to succeed across the breadth of concerns in IFs.
In representing the behavior of agent classes and the structures of systems, IFs draws upon large bodies of insight in many theoretical and modeling literatures. Although IFs sometimes breaks new ground with respect to specific sub-systems, its strengths lie primarily in the integration and synthesis of much earlier work.
- ↑ Bremer, Stuart A. 1977. Simulated Worlds: A Computer Model of National Decision-Making. Princeton: Princeton University Press.