M A T P O S T R r , c = 1 = M A T P O S T R r , c = 1 , t = 1 ∗ A n a l F u n c ( G D P P C P r ) A n a l F u n c ( G D P P C P r , t = 1 ) + C u l t S h M P r = c u l t u r a l + m a t p o s t r a d d r , t {\displaystyle MATPOSTR_{r,c=1}=\mathbf {MATPOSTR} _{r,c=1,t=1}*{\frac {AnalFunc(GDPPCP_{r})}{AnalFunc(GDPPCP_{r,t=1})}}+\mathbf {CultShMP} _{r=cultural}+\mathbf {matpostradd} _{r,t}}
where
C u l t S h M P r = c u l t u r a l , t = F ( M A T P O S T R r , c = 1 , t = 1 , A N a l F u n c ( G D P P C P r , t = 1 ) {\displaystyle \mathbf {CultShMP_{r=cultural,t}} =F(\mathbf {MATPOSTR} _{r,c=1,t=1},ANalFunc(GDPPCP_{r,t=1})}
S U R V S E r , c = 1 = S U R V S E r , c = 1 , t = 1 ∗ A n a l F u n c ( G D P P C P r ) A n a l F u n c ( G D P P C P r , t = 1 ) + C u l t S h S E r = c u l t u r a l , t + s u r v s e a d d r , t {\displaystyle SURVSE_{r,c=1}=\mathbf {SURVSE} _{r,c=1,t=1}*{\frac {AnalFunc(GDPPCP_{r})}{AnalFunc(GDPPCP_{r,t=1})}}+\mathbf {CultShSE} _{r=cultural,t}+\mathbf {survseadd} _{r,t}}
C u l t S h S E r = c u l u t r a l , t = F ( S U R V S E r , c = 1 , t = 1 , A n a l F u n c ( G D P P C P r , t = 1 ) {\displaystyle \mathbf {CultShSE} _{r=culutral,t}=F(\mathbf {SURVSE_{r,c=1,t=1}} ,AnalFunc(GDPPCP_{r,t=1})}
T R A D S R A T r , c = 1 = T R A D S R A T r , c = 1 , t = 1 ∗ A n a l F u n c ( G D P P P r ) A n a l F u n c ( G D P P C P r , t = 1 + C u l t S h T S r = c u l t u r a l , t + t r a d s r a t a d d r , t {\displaystyle TRADSRAT_{r,c=1}=\mathbf {TRADSRAT} _{r,c=1,t=1}*{\frac {AnalFunc(GDPPP_{r})}{AnalFunc(GDPPCP_{r,t=1}}}+\mathbf {CultShTS_{r=cultural,t}} +\mathbf {tradsratadd} _{r,t}}
<math>\mathbf{CultShTS}_{r=cultural,t}=F(\mathbf{TRADSRAT_{r,c=1,t=1}},AnalFunc(GDPPCP_{r,t=1})