C P O W γ t + 1 = C P O W γ ∗ , t + 1 ∗ ( 1 − C P O W D M γ ) {\displaystyle CPOW_{\gamma }^{t+1}=CPOW_{\gamma }^{*,t+1}*(1-CPOWDM_{\gamma })}
where
if C W A R a c t , t a γ = 1 {\displaystyle CWAR_{act,ta{\gamma }}=1} then C P o w D M γ = ∑ T a r g e t s C P O W γ − t a γ ∗ c w a r s v + ∑ T a r g e t s N u c l D a m γ − t a γ {\displaystyle CPowDM_{\gamma }=\sum ^{Targets}CPOW_{{\gamma }-ta{\gamma }}*\mathbf {cwarsv} +\sum ^{Targets}NuclDam_{{\gamma }-ta{\gamma }}}
else
<math>CPowDM_{\gamma}=0