if s f u s e h i s t = 3 {\displaystyle \mathbf {sfusehist} =3} then (converge)
S F I N S T A B A L L B a s e γ t = P r e d i c t e d T e r m f t P r e d i c t e d T e r m f t − 1 ∗ S F I N S T A B A L L γ t − 1 {\displaystyle SFINSTABALLBase_{\gamma }^{t}={\frac {PredictedTerm_{f}^{t}}{PredictedTerm_{f}^{t-1}}}*\mathbf {SFINSTABALL} _{\gamma }^{t-1}}
S F I N S T A B A L L γ t = C o n v e r g e O v e r T i m e ( S F I N S T A B A L L B a s e γ t , P r e d i c t e d T e r m f t , p o l c o n v ) w h e r e < m a t h > P r e d i c t e d T e r m = A N A L F U N ( G D P P C P γ t , D e m o c T e r m t , I n f M o r T e r m t , T r a d e T e r m t , E d u c 25 T e r m t ) {\displaystyle SFINSTABALL_{\gamma }^{t}=ConvergeOverTime(SFINSTABALLBase_{\gamma }^{t},PredictedTerm_{f}^{t},\mathbf {polconv} )where<math>PredictedTerm=ANALFUN(GDPPCP_{\gamma }^{t},DemocTerm^{t},InfMorTerm^{t},TradeTerm^{t},Educ25Term^{t})}
D e m o c T e r m = D e m o P o l i t y γ {\displaystyle DemocTerm=DemoPolity_{\gamma }}
I n f M o r T e r m = I N F M O R γ W I N F M O R {\displaystyle InfMorTerm={\frac {INFMOR_{\gamma }}{WINFMOR}}}
T r a d e T e r m = X γ + M γ G D P ∗ 100 {\displaystyle TradeTerm={\frac {X_{\gamma }+M_{\gamma }}{GDP}}*100}
E d u c 25 T e r m = E D Y R S A G 25 γ {\displaystyle Educ25Term=EDYRSAG25_{\gamma }}